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The Vertica Codeline

Shilpa Lawande

The Vertica Analytic Database unequivocally established column-stores as the su-
perior architecture for large-scale analytical workloads. Vertica’s journey started
as a research project called C-Store, a collaboration by professors at MIT, Brown,
Brandeis, and UMass Boston. When Michael Stonebraker and his business partner
Andy Palmer decided to commercialize it in 2005, C-Store existed in the form of a
research paper that had been sent for publication to VLDB (but not yet accepted)
and a C++ program that ran exactly seven simple queries from TPC-H out of the
box—it has no SQL front-end or query optimizer, and in order to run additional
queries, you had to code the query plan in C++ using low level operators! Six years
later (2011), Vertica was acquired by Hewlett-Packard Enterprise (HPE). The Vertica
Analytics Engine—its code and the engineers behind it—became the foundation of
HPE’s “big data” analytics solution.

What follows are some highlights from the amazing Vertica journey, as retold by
members of its early engineering team. And some lessons we learned along the way.

Building a Database System from Scratch

My involvement with Vertica started in March 2005 when I came across a job
ad on Monster.com that said Stonebraker Systems: “Building some interesting
technology for data warehousing.” As someone who was getting bored at Oracle
and had studied Mike’s Red Book! during my DB classes at University of Wisconsin-
Madison, I was intrigued, for sure. My homework after the first interview was—
you guessed it—read the C-Store paper [Stonebraker et al. 2005a] and be ready to
discuss it with Mike (a practice we continued to follow, except eventually the paper
was replaced with the C-Store Seven Years Later paper [Lamb et al. 2012], and the

1. Readings in Database Systems http://www.redbook.io/.
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interview conducted by one or more senior developers). I do not recall much of that
first interview but came away inspired by Mike’s pitch: “It doesn’t matter whether
we succeed or fail. You would have built an interesting system. How many people
in the world get to build a database system from scratch?” And that’s why I joined
Vertica (see Chapter 18).

The early days were filled with the usual chaos that is the stuff of startups: hard
stuff like getting the team to jell, easier stuff like writing code, more hard stuff like
sorting through disagreements on whether to use push- or pull-based data-flow
operators (and whether the building was too hot for the guys or too cold for me),
writing some more code, and so on.

In the summer of 2005, we hired Chuck Bear, who at the time was living out
of his last company’s basement and working his way down the Appalachian Trail.
After Chuck’s interview, Mike barged into the engineering meeting saying, “We
must do whatever it takes to hire this guy!” And since the team was fully staffed,
Chuck got asked to do “performance testing.” It did not take long for everyone to
realize that Chuck’s talents were underutilized as a “tester” (as Mike called quality
assurance engineers). There was one occasion where Chuck couldn’t convince one
of the engineers that we could be way faster than C-Store, so, over the next few
nights, while his tests were running, he wrote a bunch of code that ran 2x faster
than what was checked in!

The first commercial version of Vertica was already several times faster than C-
Store, and we were only just getting going, a fantastic feat of engineering! From
here on, C-Store and Vertica evolved along separate paths. Vertica went on to build
a full-fledged petabyte-scale distributed database system, but we did keep in close
touch with the research team, sharing ideas, especially on query execution with
Daniel Abadi and Sam Madden, on query optimization with Mitch Cherniack at
Brandeis, and on automatic database design with Stan Zdonik and Alex Rasin at
Brown. Vertica had to evolve many of the ideas in the C-Store paper from real-world
experience, but the ideas in Daniel Abadi’s Ph.D. thesis on compressed column
stores still remained at the heart of Vertica’s engine, and we should all be glad he
chose computer science over medicine.

Lesson. Ineffective software engineering organizations, the bestideaswin. Shared
ownership of the code base is essential. And, if you can’t resolve a disagreement
with words, do it with code.

Code Meets Customers
The codeline journey of Vertica was a good example of what is called a “Lean
Startup” these days—again Mike was ahead of his time (see Chapter 7). The first
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version “Alpha” was supposed to only do the seven C-Store queries, but with an
SQL front-end, not C++ and run on a single node. To do this, the decision was to
use a “brutalized Postgres” (see Chapter 16), throwing away everything except its
parser and associated data structures (why reinvent the wheel?) and converting it
from a multi-process model to a single-process multi-threaded model. Also left out
by choice: a lot of things that you can’t imagine a database not being able to do!

Omer Trajman was one of the early engineers. He later went on to run the
Field Engineering team (charged with helping deploy Vertica in customer sites).
He recalls:

One of these choices was pushing off the implementation of delete, a crazy
limitation for a new high-performance database. In the first commercial versions
of Vertica, if a user made a mistake loading data, the data couldn’t be changed,
updated, or even deleted. The only command available to discard data was to
drop the database and start over. As a workaround to having to reload data from
flat files, the team later added INSERT/SELECT to order to create a copy of loaded
data with some transformation applied, including removing rows. After adding
the ability to rename and drop tables, the basic building blocks to automate
deletes were in place. As it turns out, this was the right decision for Vertica’s
target market.

The Vertica team found that there were two types of ideal early customers:
those whose data almost never changed, and those whose data changed all the
time. For people with relatively static data, Vertica provided the fastest and most
efficient response times for analytics. For people whose data changed all the
time, Vertica was able to go from raw data to fast queries more quickly than
any other solution in the market. To get significant value from Vertica, neither
customer type needed to delete data beyond dropping tables. Customers with
data that rarely changed were able to prepare it and make sure it was properly
loaded. Customers with rapidly changing data did not have the time to make
corrections. Mike and the team had a genuine insight that at the time seemed
ludicrous: a commercial database that can’t delete data.

Lesson. Work with customers, early and often. Listen carefully. Don’t be con-
strained by conventional wisdom.

Don’t Reinvent the Wheel (Make It Better)

Discussions about what to build and what not weren’t without a share of haggling
between the professors who wrote the academic C-Store paper [Stonebraker et al.
2005a] and engineers who were building the real world Vertica. Here’s Chuck Bear
recounting those days.
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Back in 2006, the professors used to drop by Vertica every week to make sure
we (the engineers) were using good designs and otherwise building the system
correctly. When we told Mike and Dave DeWitt? that we were mulling approaches
to multiple users and transactions, maybe some sort of optimistic concurrency
control or multi-versioning, they yelled at us and said, in so many words, “Just
do locking! You don’t understand locking! We’ll get you a copy of our textbook
chapter on locking!” Also, they told us to look into the Shore storage manager
[Carey et al. 1994], thinking maybe we could reuse its locking implementation.

We read the photocopy of the chapter on locking that they provided us, and
the following week we were prepared. First, we thanked the professors for their
suggested reading material. But then we hit them with the hard questions . . .
“How does locking work in a system like Vertica where writers don’t write to the
place where readers read? If you have a highly compressed table, won’t a page-
level lock on an RLE? column essentially lock the whole table?”

In the end, they accepted our compromise idea, that we’d “just do locking”
for transaction support, but at the table level, and additionally readers could take
snapshots so they didn’t need any locks at all. The professors agreed that it was a
reasonable design for the early versions, and in fact it remains this way over ten
years later.

That’s the way lots of things worked. If you could get a design that was both
professor-approved and that the engineers figured they could build, you had a
winner.

Lesson. This decision is a great case study for “Keep it simple, stupid,” (aka KISS
principle) and “Build for the common case,” two crucial systems design principles
that are perhaps taught in graduate school but can only be cemented through the
school of hard knocks.

Architectural Decisions: Where Research Meets Real Life

The decision about locking was an example of something we learned over and over
during Vertica’s early years: that “professors aren’t always right” and “the customer
always wins.”

The 2012 paper “The Vertica Analytic Database: C-Store 7 years later “ [Lamb et
al. 2012] provides a comprehensive retrospective on the academic proposals from
the original C-Store paper that survived the test of real-world deployments—and
others that turned out to be spectacularly wrong.

2.Dave DeWitt (see Chapter 6), on Vertica’s technical advisory board, often visited the Vertica team.
3. Run Length Encoding
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For instance, the idea of permutations® was a complete disaster. It slowed the
system down to the point of being useless and was abandoned very early on. Late
materialization of columns worked to an extent, for predicates and simple joins,
but did not do so well once more complex joins were introduced. The original as-
sumption that most data warehouse schemas [Kimball and Ross 2013] were “Star”
or “Snowflake” served the system well in getting some early customers but soon
had to be revisited. The optimizer was later adapted for “almost star” or “inverted
snowflake” schemas and then was ultimately completely rewritten to be a general
distributed query optimizer. Eventually, Vertica’s optimizer and execution engine
did some very clever tricks, including leveraging information on data segmentation
during query optimization (vs. building a single node plan first and then paralleliz-
ing it, as most commercial optimizers tend to do); delaying optimizer decisions
like type of join algorithm until runtime; and so on.

Another architectural decision that took several iterations and field experience
to get right was the design of the Tuple Mover. Here’s Dmitry Bochkov, the early
lead engineer for this component, reminiscing about his interactions with Mike
during this time.

The evolution of the Tuple Mover design in the first versions of Vertica demon-
strated to me Mike’s ability to support switching from academic approach to
“small matters of engineering” and back. What started as a simple implemen-
tation of an LSM (log-structured merge-tree) quickly degenerated into a compli-
cated, low-performance component plagued by inefficient multiple rewrites of
the same data and a locking system that competed with the Execution Engine
and Storage Access Layer locking mechanisms.

It took a few rounds of design sessions that looked more like thesis defense,
and I will forever remember the first approving nod I received from Mike. What
followed was that the moveout and mergeout algorithms ended up using “our
own dog food.” Our own Execution Engine was used for running the Tuple
Mover operations to better handle transactions, resources planning, failover,
and reconciliation among other tasks. And while it added significant pressure
on other components, it allowed the Tuple Mover to become an integral part of
Dr. Stonebraker’s vision of a high-performance distributed database.

Anyone who has worked with Mike knows he is a man of few words, and if
you listen carefully, you can learn a massive amount from his terseness. If you

4. The idea that multiple projections in different sort orders could be combined at runtime to
recreate the full table. Eventually, it was replaced by the notion of a super projection that contains
all the columns.
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worked at Vertica in the early days, you often heard Mike-isms, such as “buying a
downstream farm” (referring to “engineering debt”)> and the famous “over Mike’s
dead body” (OMDB). These phrases referred to all the “bells and whistles” that
database systems are filled with that Vertica would never build, perfectly capturing
the tension between “research” and “real-life” choices that Vertica faced repeatedly
over its life.

Min Xiao,® founding engineer turned sales engineer, describes an OMDB en-
counter with Mike.

One day in 2008, I came back to the office after visiting a global bank customer. I
saw that Mike, wearing a red shirt, sat in a small corner conference room working
on his laptop. I stepped in and told him that the bank needed the feature of
disaster recovery (DR) from Vertica. In the past, Mike had always wanted me
to let him know the product requests from the customers. For this customer,
their primary Vertica instance was in Manhattan and they wanted a DR instance
in New Jersey. They had used Oracle for the same project prior to Vertica and
therefore also hoped to have a statement-by-statement-via-change-data-capture
type of DR. Mike listened to me for a minute. Apparently, he had heard the
request from someone else and didn’t look surprised at all. He looked at me and
calmly said “They don’t need that type of DR solution. All they need is an active
replication thru parallel loading.” As always, the answer was concise as well as
precise. While I took a moment to digest his answer, he noticed my hesitation
and added “over my dead body.” I went back to the customer and communicated
with them about the proposal of having a replicated copy. The bank wasn’t overly
excited but didn’t raise the DR request anymore. Meanwhile, one of our largest
(non-bank) customers, who had never used Oracle, implemented exactly what
Mike had proposed and was very happy with it. They loaded into two 115-node
clusters in parallel and used them to recover from each other.

Lesson. Complexity is often the Achilles’ heel of large-scale distributed systems,
and as Daniel Abadi describes in vivid detail in Chapter 18, Mike hated complexity.
With the liberally used phrase, OMDB, Mike forced us to think hard about every
feature we added, to ensure it was truly required, a practice that served us well as our
customer base grew. One of the reasons for Vertica’s success was that we thought
very hard about what NOT to add, even though there was a ton of pressure from

5. A farm downstream along a river will always be flooded and may appear to be cheaper. This is
an analogy for engineering debt, decisions made to save short-term coding work that required a
ton of time and effort (i.e., cost) in the long run.

6. Min Xiao followed Mike and Andy Palmer to join the founding team of Tamr, Inc.
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customers. Sometimes we had to relent on some earlier decisions as the system
evolved to serve different classes of customers, but we still always thought long
and hard about taking on complexity.

Customers: The Most Important Members of the Dev Team
Just as we thought hard about what features to add, we also listened very care-
fully to what customers were really asking for. Sometimes customers would ask
for a feature, but we would dig into what problem they faced instead and often
find that several seemingly different requests could often be fulfilled with one “fea-
ture.” Tight collaboration between engineering and customers became a key aspect
of our culture from early on. Engineers thrived from hearing about the problems
customers were having. Engineering, Customer Support, and Field Engineers all
worked closely together to determine solutions to customer problems and the feed-
back often led to improvements, some incremental, but sometimes monumental.
The earliest example of such a collaboration was when one of the largest algo-
rithm trading firms became a customer in 2008. Min Xiao recalls a day trip by the
founders of this trading firm to our office in Billerica, Massachusetts, one Thursday
afternoon.

Their CTO was a big fan of Mike. After several hours of intense discussions with
us, we politely asked if they needed transportation to the airport. (This was before
the days of Uber.) Their CEO casually brushed aside our request. Only later we
found out that they had no real schedule constraints because they had flown in
their own corporate jet. Not only that, but once he found out that Mike played
the banjo, the next day he brought his bass guitar to the Vertica office. Mike, Stan
Zdonik (a professor in Brown University), and John “JR” Robinson (a founding
engineer of Vertica) played bluegrass together for several hours. This wasn’t
an isolated “Mike fan”: customers loved and respected Mike for his technical
knowledge and straight talk. We often joked that he was our best salesperson
ever. :-)

Over time, this customer became a very close development partner to Vertica.
They voluntarily helped us build Time-series Window functions, a feature-set
that was originally on the “OMDB” list. Due to Vertica’s compressed and sorted
columnar data storage, many of the windowing functions, which often take a
long time to execute in other databases, could run blazingly fast in Vertica.

I recall the thrill that engineers felt to see the fruits of their work in practice.
It was a day of great celebration for the engineering team when this customer
reached a milestone running sub-second queries on 10 trillion rows of historical
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trading data! These time-series functions later become one of the major perfor-
mance differentiators for Vertica, and enabled very sophisticated log analytics to
be expressed using rather simple SQL commands.

Abigtechnical inflection point for Vertica came around 2009, when we started to
land customers in the Web and social gaming areas. These companies really pushed
Vertica’s scale to being able to handle petabytes of data in production. It took many
iterations to really get “trickle loads” to work, but in the end this customer had an
architecture where every click from all their games went into the database, and yet
they were able to update analytical models in “near real-time.”

Another inflection point came when a very high profile social media customer
decided torun Vertica on 300 nodes of very cheap and unreliable hardware. Imagine
our shock when we got the first support case on a cluster of this size! This customer
forced the team to really think about high availability and the idea that nodes could
be down any time. As result, the entire system—from the catalog to recovery to
cluster expansion—had to be reviewed for this use case. By this time, more and
more customers wanted to run on the cloud, and all this work proved invaluable to
support that use case.

Lesson. Keep engineers close to customers. Maybe make some music together.
Listen carefully to their problems. Collaborate with them on solutions. Don’t be
afraid to iterate. There is no greater motivator for an engineer than to find out his
or her code didn’t work in the real world, nor greater reward than seeing their code
make a difference to a customer’s business!

Conclusion

Vertica’s storyis one of alot of bold bets, some of which worked right from academic
concept, and others that took a lot of hard engineering to get right. It is also a story
of fruitful collaboration between professors and engineers. Most of all, it is a story of
how a small startup, by working closely with customers, can change the prevailing
standard of an industry, as Vertica did to the practices of data warehousing and big
data analytics.
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