








ACM Books

Editor in Chief
M. Tamer Ozsu, University of Waterloo

ACM Books is a new series of high-quality books for the computer science community,
published by ACM in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie
2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:

Signal Processing, Architectures, and Detection of Emotion and Cognition
Editors: Sharon Oviatt, Monash University

Bjorn Schuller, University of Augsburg and Imperial College London

Philip R. Cohen, Monash University

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Kriiger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)

2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University

Yanhong Annie Liu, Stony Brook University

2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.

Ahmad-Reza Sadeghi, Technische Universitit Darmstadt

2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018



Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks

Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School

Limsoon Wong, National University of Singapore

2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:

Foundations, User Modeling, and Common Modality Combinations

Editors: Sharon Oviatt, Incaa Designs

Bjorn Schuller, University of Passau and Imperial College London

Philip R. Cohen, Voicebox Technologies

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Kriger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)

2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining

ChengXiang Zhai, University of Illinois at Urbana-Champaign

Sean Massung, University of Illinois at Urbana-Champaign

2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of lowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016



Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology

Andrew L. Russell, Stevens Institute of Technology

2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business

and Government, John F. Kennedy School of Government, Harvard University

2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers

Bryan Jeffrey Parno, Microsoft Research

2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014






Making Databases Work

The Pragmatic Wisdom of Michael Stonebraker

Michael L. Brodie

Massachusetts Institute of Technology

ACM Books #22



Copyright © 2019 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan & Claypool is aware
of a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding

trademarks and registration.

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker

Michael L. Brodie, editor

books.acm.org

www.morganclaypoolpublishers.com

ISBN: 978-1-94748-719-2
ISBN: 978-1-94748-716-1
ISBN: 978-1-94748-717-8
ISBN: 978-1-94748-718-5

hardcover
paperback
eBook
ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOls:

10.1145/3226595 Book 10.1145/3226595.3226619 Chapter 21
10.1145/3226595.3226596 Foreword/Preface 10.1145/3226595.3226620 Chapter 22
10.1145/3226595.3226597 Introduction 10.1145/3226595.3226621 Chapter 23
10.1145/3226595.3226598 Part I 10.1145/3226595.3226622 Part VII.B/Chapter 24
10.1145/3226595.3226599 Part II/Chapter 1 10.1145/3226595.3226623 Chapter 25
10.1145/3226595.3226600 Part I1I/Chapter 2 10.1145/3226595.3226624 Chapter 26
10.1145/3226595.3226601 Part IV/Chapter 3 10.1145/3226595.3226625 Chapter 27
10.1145/3226595.3226602 Chapter 4 10.1145/3226595.3226626 Chapter 28
10.1145/3226595.3226603 Chapter 5 10.1145/3226595.3226627 Chapter 29
10.1145/3226595.3226604 Chapter 6 10.1145/3226595.3226628 Chapter 30
10.1145/3226595.3226605 Part V/Chapter 7 10.1145/3226595.3226629 Chapter 31
10.1145/3226595.3226606 Chapter 8 10.1145/3226595.3226630 Part VIII/Chapter 32
10.1145/3226595.3226607 Chapter 9 10.1145/3226595.3226631 Chapter 33
10.1145/3226595.3226608 Part VI/Chapter 10 10.1145/3226595.3226632 Chapter 34
10.1145/3226595.3226609 Chapter 11 10.1145/3226595.3226633 Chapter 35
10.1145/3226595.3226610 Chapter 12 10.1145/3226595.3226634 Chapter 36
10.1145/3226595.3226611 Chapter 13 10.1145/3226595.3226635 Part IX/Paper 1
10.1145/3226595.3226612 Part VII/Chapter 14 10.1145/3226595.3226636 Paper 2
10.1145/3226595.3226613 Part VIL.A/Chapter 15 10.1145/3226595.3226637 Paper 3
10.1145/3226595.3226614 Chapter 16 10.1145/3226595.3226638 Paper 4
10.1145/3226595.3226615 Chapter 17 10.1145/3226595.3226639 Paper 5
10.1145/3226595.3226616 Chapter 18 10.1145/3226595.3226640 Paper 6
10.1145/3226595.3226617 Chapter 19 10.1145/3226595.3226641 Collected Works

10.1145/3226595.3226618

Chapter 20

10.1145/3226595.3226642

References/Index/Bios


http://dx.doi.org/10.1145/3226595
http://dx.doi.org/10.1145/3226595.3226619
http://dx.doi.org/10.1145/3226595.3226596
http://dx.doi.org/10.1145/3226595.3226620
http://dx.doi.org/10.1145/3226595.3226597
http://dx.doi.org/10.1145/3226595.3226621
http://dx.doi.org/10.1145/3226595.3226598
http://dx.doi.org/10.1145/3226595.3226622
http://dx.doi.org/10.1145/3226595.3226599
http://dx.doi.org/10.1145/3226595.3226623
http://dx.doi.org/10.1145/3226595.3226600
http://dx.doi.org/10.1145/3226595.3226624
http://dx.doi.org/10.1145/3226595.3226601
http://dx.doi.org/10.1145/3226595.3226625
http://dx.doi.org/10.1145/3226595.3226602
http://dx.doi.org/10.1145/3226595.3226626
http://dx.doi.org/10.1145/3226595.3226603
http://dx.doi.org/10.1145/3226595.3226627
http://dx.doi.org/10.1145/3226595.3226604
http://dx.doi.org/10.1145/3226595.3226628
http://dx.doi.org/10.1145/3226595.3226605
http://dx.doi.org/10.1145/3226595.3226629
http://dx.doi.org/10.1145/3226595.3226606
http://dx.doi.org/10.1145/3226595.3226630
http://dx.doi.org/10.1145/3226595.3226607
http://dx.doi.org/10.1145/3226595.3226631
http://dx.doi.org/10.1145/3226595.3226608
http://dx.doi.org/10.1145/3226595.3226632
http://dx.doi.org/10.1145/3226595.3226609
http://dx.doi.org/10.1145/3226595.3226633
http://dx.doi.org/10.1145/3226595.3226610
http://dx.doi.org/10.1145/3226595.3226634
http://dx.doi.org/10.1145/3226595.3226611
http://dx.doi.org/10.1145/3226595.3226635
http://dx.doi.org/10.1145/3226595.3226612
http://dx.doi.org/10.1145/3226595.3226636
http://dx.doi.org/10.1145/3226595.3226613
http://dx.doi.org/10.1145/3226595.3226637
http://dx.doi.org/10.1145/3226595.3226614
http://dx.doi.org/10.1145/3226595.3226638
http://dx.doi.org/10.1145/3226595.3226615
http://dx.doi.org/10.1145/3226595.3226639
http://dx.doi.org/10.1145/3226595.3226616
http://dx.doi.org/10.1145/3226595.3226640
http://dx.doi.org/10.1145/3226595.3226617
http://dx.doi.org/10.1145/3226595.3226641
http://dx.doi.org/10.1145/3226595.3226618
http://dx.doi.org/10.1145/3226595.3226642

A publication in the ACM Books series, #22
Editor in Chief: M. Tamer Ozsu, University of Waterloo

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTgX.
First Edition

10987654321






This book is dedicated to Michael Stonebraker, Jim Gray,

Ted Codd, and Charlie Bachman, recipients of the ACM

A.M. Turing Award for the management of data, one of the
world’s most valuable resources, and to their many collaborators,

particularly the contributors to this volume.






Contents

Data Management Technology Kairometer: The Historical Context xxvii
Foreword xxix
Preface xxxi
Introduction 1
Michael L. Brodie

A Brief History of Databases 1
Preparing to Read the Stories and What You Might Find There 6
A Travel Guide to Software Systems Lessons in Nine Parts 7

PARTI| 2014 ACM A.M. TURING AWARD PAPER AND LECTURE 13

The Land Sharks Are on the Squawk Box 15
Michael Stonebraker

Off to a Good Start 16

First Speedbumps 22

Another High 26

The High Does Not Last 28

The Future Looks Up (Again) 30

The Good Times Do Not Last Long 30
The Stories End 31

Why a Bicycle Story? 32

The Present Day 35

References 36



xiv Contents

PART Il MIKE STONEBRAKER’S CAREER 39

Chapter 1 Make it Happen: The Life of Michael Stonebraker 41
Samuel Madden
Synopsis 41
Early Years and Education 42
Academic Career and the Birth of Ingres 43
The Post-Ingres Years 45
Industry, MIT, and the New Millennium 46
Stonebraker’s Legacy 47
Companies 48
Awards and Honors 49
Service 49
Advocacy 50
Personal Life 50
Acknowledgments 50

Mike Stonebraker’s Student Genealogy Chart 53
The Career of Mike Stonebraker: The Chart 55

PART lll MIKE STONEBRAKER SPEAKS OUT: AN INTERVIEW
WITH MARIANNE WINSLETT 57

Chapter 2 Mike Stonebraker Speaks Out: An Interview 59

Marianne Winslett

PART IV THE BIG PICTURE 85

Chapter 3 Leadership and Advocacy 87
Philip A. Bernstein

Systems 87
Mechanisms 90
Advocacy 91

Chapter 4 Perspectives: The 2014 ACM Turing Award 93

James Hamilton



Contents xv

Chapter 5 Birth of an Industry; Path to the Turing Award 97
Jerry Held

Birth of an Industry (1970s) 97
Ingres—Timing 98

Ingres—Team 99

Ingres—Competition 100

Ingres—Platform 101

Adolescence with Competition (1980s and 1990s) 101
Competing with Oracle 102

Competing with Oracle (Again) 102
Maturity with Variety (2000s and 2010s) 103
Vertica 104

VoltDB 104

Tamr 105

The Bottom Line 105

Chapter 6 A Perspective of Mike from a 50-Year Vantage Point 107
David J. DeWitt

Fall 1970—University of Michigan 107
Fall 1976—Wisconsin 108

Fall 1983—Berkeley 111

1988-1995—No Object Oriented DBMS Detour for Mike 111
2000—Project Sequoia 112
2003—CIDR Conference Launch 113
2005—Sabbatical at MIT 113

2008—We Blog about “MapReduce” 114
2014—Finally, a Turing Award 114
2016—I Land at MIT 115

2017 115

PARTV STARTUPS 117

Chapter 7 How to Start a Company in Five (Not So) Easy Steps 119
Michael Stonebraker

Introduction 119
Step 1: Have a Good Idea 119



xvi Contents

Step 2: Assemble a Team and Build a Prototype 120
Step 3: Find a Lighthouse Customer 122

Step 4: Recruit Adult Supervision 122

Step 5: Prepare a Pitch Deck and Solicit the VCs 123
Comments 125

Summary 128

Chapter 8 How to Create and Run a Stonebraker Startup— The Real Story 129
Andy Palmer

An Extraordinary Achievement. An Extraordinary Contribution. 130
A Problem of Mutual Interest A Happy Discovery 132

The Power of Partnership 133

Fierce Pragmatism, Unwavering Clarity, Boundless Energy 135

A Final Observation: Startups are Fundamentally about People 138

Chapter 9 Getting Grownups in the Room: A VC Perspective 139
Jo Tango

My First Meeting 139
Context 139
StreamBase 140

A Playbook Is Set 142
Mike’s Values 143

A Coda 143

A Great Day 144

PART VI DATABASE SYSTEMS RESEARCH 145

Chapter 10 Where Good Ideas Come From and How to Exploit Them 147
Michael Stonebraker

Introduction 147

The Birth of Ingres 147

Abstract Data Types (ADTs) 148

Postgres 149

Distributed Ingres, Ingres*, Cohera, and Morpheus 150
Parallel Databases 151

Data Warehouses 151



Contents

H-Store/VoltDB 151

Data Tamer 152

How to Exploit Ideas 153
Closing Observations 153

Chapter 11 Where We Have Failed 155

Chapter 12

Chapter 13

PART VII

Chapter 14

PART VIL.A

Chapter 15

Michael Stonebraker

The Three Failures 155
Consequences of Our Three Failures 160
Summary 164

Stonebraker and Open Source 165
Mike Olson

The Origins of the BSD License 165

BSD and Ingres 166

The Impact of Ingres 167

Post-Ingres 168

The Impact of Open Source on Research 169

The Relational Database Management Systems Genealogy 173

Felix Naumann

CONTRIBUTIONS BY SYSTEM 181

Research Contributions of Mike Stonebraker: An Overview 183
Samuel Madden

Technical Rules of Engagement with Mike 183
Mike’s Technical Contributions 185

RESEARCH CONTRIBUTIONS BY SYSTEM 191

The Later Ingres Years 193
Michael J. Carey

How I Ended Up at the Ingres Party 193
Ingres: Realizing (and Sharing!) a Relational DBMS 194

Xvii



xviii Contents

Distributed Ingres: One Was Good, So More Must be Better 198
Ingres: Moving Beyond Business Data 200

Chapter 16 Looking Back at Postgres 205
Joseph M. Hellerstein

Context 205

Postgres: An Overview 206
Log-centric Storage and Recovery 213
Software Impact 218

Lessons 223

Acknowledgments 224

Chapter 17 Databases Meet the Stream Processing Era 225
Magdalena Balazinska, Stan Zdonik

Origins of the Aurora and Borealis Projects 225

The Aurora and Borealis Stream-Processing Systems 227
Concurrent Stream-Processing Efforts 231

Founding StreamBase Systems 232

Stream Processing Today 233

Acknowledgments 234

Chapter 18 C-Store: Through the Eyes of a Ph.D. Student 235
Daniel J. Abadi

How I Became a Computer Scientist 235

The Idea, Evolution, and Impact of C-Store 238
Building C-Store with Mike 240

Founding Vertica Systems 242

Chapter 19 In-Memory, Horizontal, and Transactional:
The H-Store OLTP DBMS Project 245

Andy Pavlo

System Architecture Overview 246
First Prototype (2006) 247

Second Prototype (2007-2008) 247
VoltDB (2009-Present) 250
H-Store/VoltDB Split (2010-2016) 251
Conclusion 251



Contents

Chapter 20 Scaling Mountains: SciDB and Scientific Data Management 253

Paul Brown

Selecting Your Mountain 254

Planning the Climb 256

Expedition Logistics 259

Base Camp 260

Plans, Mountains, and Altitude Sickness 263
On Peaks 267

Acknowledgments 268

Chapter 21 Data Unification at Scale: Data Tamer 269
Thab Ilyas

How I Got Involved 269

Data Tamer: The Idea and Prototype 270

The Company: Tamr Inc. 273

Mike’s Influence: Three Lessons Learned. 276

Chapter 22 The BigDAWG Polystore System 279
Tim Mattson, Jennie Rogers, Aaron J. Elmore

Big Data ISTC 279
The Origins of BigDAWG 280

One Size Does Not Fit All and the Quest for Polystore Systems

Putting it All Together 284

Query Modeling and Optimization 285
Data Movement 286

BigDAWG Releases and Demos 287
Closing Thoughts 288

282

Chapter 23 Data Civilizer: End-to-End Support for Data Discovery, Integration,

and Cleaning 291

Mourad Ouzzani, Nan Tang, Raul Castro Fernandez

We Need to Civilize the Data 292

The Day-to-Day Life of an Analyst 292
Designing an End-to-End System 294
Data Civilizer Challenges 295
Concluding Remarks 300

Xix



xx Contents

PART VII.B CONTRIBUTIONS FROM BUILDING SYSTEMS 301

Chapter 24 The Commercial Ingres Codeline 303
Paul Butterworth, Fred Carter

Research to Commercial 304
Conclusions 309
Open Source Ingres 309

Chapter 25 The Postgres and Illustra Codelines 311
Wei Hong

Postgres: The Academic Prototype 311
Mlustra: “Doing It for Dollars” 313
PostgreSQL and Beyond 317

Open Source PostgreSQL 318

Final Thoughts 319

Chapter 26 The Aurora/Borealis/ StreamBase Codelines: A Tale of Three Systems 321
Nesime Tatbul

Aurora/Borealis: The Dawn of Stream Processing Systems 322
From 100K+ Lines of University Code to a Commercial Product 326
Encounters with StreamBase Customers 327

“Over My Dead Body” Issues in StreamBase 328

An April Fool’s Day Joke, or the Next Big Idea? 330

Concluding Remarks 331

Acknowledgments 332

Chapter 27 The Vertica Codeline 333
Shilpa Lawande

Building a Database System from Scratch 333

Code Meets Customers 334

Don’t Reinvent the Wheel (Make It Better) 335

Architectural Decisions: Where Research Meets Real Life 336
Customers: The Most Important Members of the Dev Team 339
Conclusion 340

Acknowledgments 340



Contents  xxi

Chapter 28 The VoltDB Codeline 341
John Hugg

Compaction 342
Latency 344

Disk Persistence 346
Latency Redux 347
Conclusion 348

Chapter 29 The SciDB Codeline: Crossing the Chasm 349
Kriti Sen Sharma, Alex Poliakov, Jason Kinchen

Playing Well with Others 349

You Can’t Have Everything (at Once) 351

In Hard Numbers We Trust 352

Language Matters 353

Security is an Ongoing Process 354

Preparing for the (Genomic) Data Deluge 354

Crossing the Chasm: From Early Adopters to Early Majority 355

Chapter 30 The Tamr Codeline 357
Nikolaus Bates-Haus

Neither Fish nor Fowl 358

Taming the Beast of Algorithmic Complexity 359
Putting Users Front and Center 361

Scaling with Respect to Variety 362

Conclusion 365

Chapter 31 The BigDAWG Codeline 367
Vijay Gadepally
Introduction 367
BigDAWG Origins 370
First Public BigDAWG Demonstration 371
Refining BigDAWG 373
BigDAWG Official Release 375
BigDAWG Future 376



xxii Contents

PART VIIl PERSPECTIVES 377

Chapter 32 IBM Relational Database Code Bases 379
James Hamilton

Why Four Code Bases? 379
The Portable Code Base Emerges 381
Looking Forward 384

Chapter 33 Aurum: A Story about Research Taste 387

Raul Castro Fernandez

Chapter 34 Nice: Or What It Was Like to Be Mike’s Student 393
Marti Hearst

Chapter 35 Michael Stonebraker: Competitor, Collaborator, Friend 397
Don Haderle

Chapter 36 The Changing of the Database Guard 403
Michael L. Brodie

Dinner with the Database Cognoscenti 403

The Great Relational-CODASYL Debate 404

Mike: More Memorable than the Debate, and Even the Cheese 406
A Decade Later: Friend or Foe? 407

PART IX SEMINAL WORKS OF MICHAEL STONEBRAKER AND HIS
COLLABORATORS 409

OLTP Through the Looking Glass, and What We Found There 411

Stavros Harizopoulos, Daniel J. Abadi,
Samuel Madden, Michael Stonebraker

Abstract 411

1 Introduction 412
Trends in OLTP 416
Shore 418



Contents

Performance Study 424

Implications for Future OLTP Engines 433
Related Work 436

Conclusions 436

Acknowledgments 437

Repeatability Assessment 437

References 437

O 0 N O G =

“One Size Fits All”: An Idea Whose Time Has Come and Gone 441

Michael Stonebraker
Ugur Cetintemel

Abstract 441

Introduction 441

Data Warehousing 443
Stream Processing 445
Performance Discussion 448
One Size Fits All? 455

A Comment on Factoring 458
Concluding Remarks 460
References 460

N O G e W

xxiii

The End of an Architectural Era (It’s Time for a Complete Rewrite) 463

Michael Stonebraker, Samuel Madden,
Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem,

Pat Helland

Abstract 463

Introduction 464

OLTP Design Considerations 466

Transaction, Processing and Environment Assumptions 470
H-Store Sketch 473

A Performance Comparison 479

Some Comments about a “One Size Does Not Fit All” World 483
Summary and Future Work 486

References 488

N O ke N



xxiv Contents

C-Store: A Column-Oriented DBMS 491

O© 0 N O U= W N =

_ =
= o

Mike Stonebraker, Daniel J. Abadi,
Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira,
Edmond Lau, Amerson Lin,

Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin,

Nga Tran, Stan Zdonik

Abstract 491

Introduction 492

Data Model 496

RS 500

WS 502

Storage Management 502
Updates and Transactions 503
Tuple Mover 508

C-Store Query Execution 509
Performance Comparison 511
Related Work 515
Conclusions 516
Acknowledgements and References 517

The Implementation of POSTGRES 519

II
111
v

VI
VII

Michael Stonebraker, Lawrence A. Rowe, Michael Hirohama

Introduction 520

The POSTGRES Data Model and Query Language 521
The Rules System 538

Storage System 547

The POSTGRES Implementation 550

Status and Performance 554

Conclusions 555

References 557

The Design and Implementation of INGRES 561

Michael Stonebraker,
Eugene Wong,



N O s W -

Contents

Peter Kreps,
Gerald Held

Introduction 562

The INGRES Process Structure 571

Data Structures and Access Methods 575
The Structure of Process 2 585

Process 3 591

Utilities in Process 4 599

Conclusion and Future Extensions 602
Acknowledgment 603

References 603

The Collected Works of Michael Stonebraker 607

References 635

Index 645

Biographies 671

XXV






The Vertica Codeline

Shilpa Lawande

The Vertica Analytic Database unequivocally established column-stores as the su-
perior architecture for large-scale analytical workloads. Vertica’s journey started
as a research project called C-Store, a collaboration by professors at MIT, Brown,
Brandeis, and UMass Boston. When Michael Stonebraker and his business partner
Andy Palmer decided to commercialize it in 2005, C-Store existed in the form of a
research paper that had been sent for publication to VLDB (but not yet accepted)
and a C++ program that ran exactly seven simple queries from TPC-H out of the
box—it has no SQL front-end or query optimizer, and in order to run additional
queries, you had to code the query plan in C++ using low level operators! Six years
later (2011), Vertica was acquired by Hewlett-Packard Enterprise (HPE). The Vertica
Analytics Engine—its code and the engineers behind it—became the foundation of
HPE’s “big data” analytics solution.

What follows are some highlights from the amazing Vertica journey, as retold by
members of its early engineering team. And some lessons we learned along the way.

Building a Database System from Scratch

My involvement with Vertica started in March 2005 when I came across a job
ad on Monster.com that said Stonebraker Systems: “Building some interesting
technology for data warehousing.” As someone who was getting bored at Oracle
and had studied Mike’s Red Book! during my DB classes at University of Wisconsin-
Madison, I was intrigued, for sure. My homework after the first interview was—
you guessed it—read the C-Store paper [Stonebraker et al. 2005a] and be ready to
discuss it with Mike (a practice we continued to follow, except eventually the paper
was replaced with the C-Store Seven Years Later paper [Lamb et al. 2012], and the

1. Readings in Database Systems http://www.redbook.io/.


http://www.redbook.io/

334 Chapter 27 The Vertica Codeline

interview conducted by one or more senior developers). I do not recall much of that
first interview but came away inspired by Mike’s pitch: “It doesn’t matter whether
we succeed or fail. You would have built an interesting system. How many people
in the world get to build a database system from scratch?” And that’s why I joined
Vertica (see Chapter 18).

The early days were filled with the usual chaos that is the stuff of startups: hard
stuff like getting the team to jell, easier stuff like writing code, more hard stuff like
sorting through disagreements on whether to use push- or pull-based data-flow
operators (and whether the building was too hot for the guys or too cold for me),
writing some more code, and so on.

In the summer of 2005, we hired Chuck Bear, who at the time was living out
of his last company’s basement and working his way down the Appalachian Trail.
After Chuck’s interview, Mike barged into the engineering meeting saying, “We
must do whatever it takes to hire this guy!” And since the team was fully staffed,
Chuck got asked to do “performance testing.” It did not take long for everyone to
realize that Chuck’s talents were underutilized as a “tester” (as Mike called quality
assurance engineers). There was one occasion where Chuck couldn’t convince one
of the engineers that we could be way faster than C-Store, so, over the next few
nights, while his tests were running, he wrote a bunch of code that ran 2x faster
than what was checked in!

The first commercial version of Vertica was already several times faster than C-
Store, and we were only just getting going, a fantastic feat of engineering! From
here on, C-Store and Vertica evolved along separate paths. Vertica went on to build
a full-fledged petabyte-scale distributed database system, but we did keep in close
touch with the research team, sharing ideas, especially on query execution with
Daniel Abadi and Sam Madden, on query optimization with Mitch Cherniack at
Brandeis, and on automatic database design with Stan Zdonik and Alex Rasin at
Brown. Vertica had to evolve many of the ideas in the C-Store paper from real-world
experience, but the ideas in Daniel Abadi’s Ph.D. thesis on compressed column
stores still remained at the heart of Vertica’s engine, and we should all be glad he
chose computer science over medicine.

Lesson. Ineffective software engineering organizations, the bestideaswin. Shared
ownership of the code base is essential. And, if you can’t resolve a disagreement
with words, do it with code.

Code Meets Customers
The codeline journey of Vertica was a good example of what is called a “Lean
Startup” these days—again Mike was ahead of his time (see Chapter 7). The first



Don’t Reinvent the Wheel (Make It Better) 335

version “Alpha” was supposed to only do the seven C-Store queries, but with an
SQL front-end, not C++ and run on a single node. To do this, the decision was to
use a “brutalized Postgres” (see Chapter 16), throwing away everything except its
parser and associated data structures (why reinvent the wheel?) and converting it
from a multi-process model to a single-process multi-threaded model. Also left out
by choice: a lot of things that you can’t imagine a database not being able to do!

Omer Trajman was one of the early engineers. He later went on to run the
Field Engineering team (charged with helping deploy Vertica in customer sites).
He recalls:

One of these choices was pushing off the implementation of delete, a crazy
limitation for a new high-performance database. In the first commercial versions
of Vertica, if a user made a mistake loading data, the data couldn’t be changed,
updated, or even deleted. The only command available to discard data was to
drop the database and start over. As a workaround to having to reload data from
flat files, the team later added INSERT/SELECT to order to create a copy of loaded
data with some transformation applied, including removing rows. After adding
the ability to rename and drop tables, the basic building blocks to automate
deletes were in place. As it turns out, this was the right decision for Vertica’s
target market.

The Vertica team found that there were two types of ideal early customers:
those whose data almost never changed, and those whose data changed all the
time. For people with relatively static data, Vertica provided the fastest and most
efficient response times for analytics. For people whose data changed all the
time, Vertica was able to go from raw data to fast queries more quickly than
any other solution in the market. To get significant value from Vertica, neither
customer type needed to delete data beyond dropping tables. Customers with
data that rarely changed were able to prepare it and make sure it was properly
loaded. Customers with rapidly changing data did not have the time to make
corrections. Mike and the team had a genuine insight that at the time seemed
ludicrous: a commercial database that can’t delete data.

Lesson. Work with customers, early and often. Listen carefully. Don’t be con-
strained by conventional wisdom.

Don’t Reinvent the Wheel (Make It Better)

Discussions about what to build and what not weren’t without a share of haggling
between the professors who wrote the academic C-Store paper [Stonebraker et al.
2005a] and engineers who were building the real world Vertica. Here’s Chuck Bear
recounting those days.



336 Chapter 27 The Vertica Codeline

Back in 2006, the professors used to drop by Vertica every week to make sure
we (the engineers) were using good designs and otherwise building the system
correctly. When we told Mike and Dave DeWitt? that we were mulling approaches
to multiple users and transactions, maybe some sort of optimistic concurrency
control or multi-versioning, they yelled at us and said, in so many words, “Just
do locking! You don’t understand locking! We’ll get you a copy of our textbook
chapter on locking!” Also, they told us to look into the Shore storage manager
[Carey et al. 1994], thinking maybe we could reuse its locking implementation.

We read the photocopy of the chapter on locking that they provided us, and
the following week we were prepared. First, we thanked the professors for their
suggested reading material. But then we hit them with the hard questions . . .
“How does locking work in a system like Vertica where writers don’t write to the
place where readers read? If you have a highly compressed table, won’t a page-
level lock on an RLE? column essentially lock the whole table?”

In the end, they accepted our compromise idea, that we’d “just do locking”
for transaction support, but at the table level, and additionally readers could take
snapshots so they didn’t need any locks at all. The professors agreed that it was a
reasonable design for the early versions, and in fact it remains this way over ten
years later.

That’s the way lots of things worked. If you could get a design that was both
professor-approved and that the engineers figured they could build, you had a
winner.

Lesson. This decision is a great case study for “Keep it simple, stupid,” (aka KISS
principle) and “Build for the common case,” two crucial systems design principles
that are perhaps taught in graduate school but can only be cemented through the
school of hard knocks.

Architectural Decisions: Where Research Meets Real Life

The decision about locking was an example of something we learned over and over
during Vertica’s early years: that “professors aren’t always right” and “the customer
always wins.”

The 2012 paper “The Vertica Analytic Database: C-Store 7 years later “ [Lamb et
al. 2012] provides a comprehensive retrospective on the academic proposals from
the original C-Store paper that survived the test of real-world deployments—and
others that turned out to be spectacularly wrong.

2.Dave DeWitt (see Chapter 6), on Vertica’s technical advisory board, often visited the Vertica team.
3. Run Length Encoding



Architectural Decisions: Where Research Meets Real Life 337

For instance, the idea of permutations® was a complete disaster. It slowed the
system down to the point of being useless and was abandoned very early on. Late
materialization of columns worked to an extent, for predicates and simple joins,
but did not do so well once more complex joins were introduced. The original as-
sumption that most data warehouse schemas [Kimball and Ross 2013] were “Star”
or “Snowflake” served the system well in getting some early customers but soon
had to be revisited. The optimizer was later adapted for “almost star” or “inverted
snowflake” schemas and then was ultimately completely rewritten to be a general
distributed query optimizer. Eventually, Vertica’s optimizer and execution engine
did some very clever tricks, including leveraging information on data segmentation
during query optimization (vs. building a single node plan first and then paralleliz-
ing it, as most commercial optimizers tend to do); delaying optimizer decisions
like type of join algorithm until runtime; and so on.

Another architectural decision that took several iterations and field experience
to get right was the design of the Tuple Mover. Here’s Dmitry Bochkov, the early
lead engineer for this component, reminiscing about his interactions with Mike
during this time.

The evolution of the Tuple Mover design in the first versions of Vertica demon-
strated to me Mike’s ability to support switching from academic approach to
“small matters of engineering” and back. What started as a simple implemen-
tation of an LSM (log-structured merge-tree) quickly degenerated into a compli-
cated, low-performance component plagued by inefficient multiple rewrites of
the same data and a locking system that competed with the Execution Engine
and Storage Access Layer locking mechanisms.

It took a few rounds of design sessions that looked more like thesis defense,
and I will forever remember the first approving nod I received from Mike. What
followed was that the moveout and mergeout algorithms ended up using “our
own dog food.” Our own Execution Engine was used for running the Tuple
Mover operations to better handle transactions, resources planning, failover,
and reconciliation among other tasks. And while it added significant pressure
on other components, it allowed the Tuple Mover to become an integral part of
Dr. Stonebraker’s vision of a high-performance distributed database.

Anyone who has worked with Mike knows he is a man of few words, and if
you listen carefully, you can learn a massive amount from his terseness. If you

4. The idea that multiple projections in different sort orders could be combined at runtime to
recreate the full table. Eventually, it was replaced by the notion of a super projection that contains
all the columns.



338 Chapter 27 The Vertica Codeline

worked at Vertica in the early days, you often heard Mike-isms, such as “buying a
downstream farm” (referring to “engineering debt”)> and the famous “over Mike’s
dead body” (OMDB). These phrases referred to all the “bells and whistles” that
database systems are filled with that Vertica would never build, perfectly capturing
the tension between “research” and “real-life” choices that Vertica faced repeatedly
over its life.

Min Xiao,® founding engineer turned sales engineer, describes an OMDB en-
counter with Mike.

One day in 2008, I came back to the office after visiting a global bank customer. I
saw that Mike, wearing a red shirt, sat in a small corner conference room working
on his laptop. I stepped in and told him that the bank needed the feature of
disaster recovery (DR) from Vertica. In the past, Mike had always wanted me
to let him know the product requests from the customers. For this customer,
their primary Vertica instance was in Manhattan and they wanted a DR instance
in New Jersey. They had used Oracle for the same project prior to Vertica and
therefore also hoped to have a statement-by-statement-via-change-data-capture
type of DR. Mike listened to me for a minute. Apparently, he had heard the
request from someone else and didn’t look surprised at all. He looked at me and
calmly said “They don’t need that type of DR solution. All they need is an active
replication thru parallel loading.” As always, the answer was concise as well as
precise. While I took a moment to digest his answer, he noticed my hesitation
and added “over my dead body.” I went back to the customer and communicated
with them about the proposal of having a replicated copy. The bank wasn’t overly
excited but didn’t raise the DR request anymore. Meanwhile, one of our largest
(non-bank) customers, who had never used Oracle, implemented exactly what
Mike had proposed and was very happy with it. They loaded into two 115-node
clusters in parallel and used them to recover from each other.

Lesson. Complexity is often the Achilles’ heel of large-scale distributed systems,
and as Daniel Abadi describes in vivid detail in Chapter 18, Mike hated complexity.
With the liberally used phrase, OMDB, Mike forced us to think hard about every
feature we added, to ensure it was truly required, a practice that served us well as our
customer base grew. One of the reasons for Vertica’s success was that we thought
very hard about what NOT to add, even though there was a ton of pressure from

5. A farm downstream along a river will always be flooded and may appear to be cheaper. This is
an analogy for engineering debt, decisions made to save short-term coding work that required a
ton of time and effort (i.e., cost) in the long run.

6. Min Xiao followed Mike and Andy Palmer to join the founding team of Tamr, Inc.



Customers: The Most Important Members of the Dev Team 339

customers. Sometimes we had to relent on some earlier decisions as the system
evolved to serve different classes of customers, but we still always thought long
and hard about taking on complexity.

Customers: The Most Important Members of the Dev Team
Just as we thought hard about what features to add, we also listened very care-
fully to what customers were really asking for. Sometimes customers would ask
for a feature, but we would dig into what problem they faced instead and often
find that several seemingly different requests could often be fulfilled with one “fea-
ture.” Tight collaboration between engineering and customers became a key aspect
of our culture from early on. Engineers thrived from hearing about the problems
customers were having. Engineering, Customer Support, and Field Engineers all
worked closely together to determine solutions to customer problems and the feed-
back often led to improvements, some incremental, but sometimes monumental.
The earliest example of such a collaboration was when one of the largest algo-
rithm trading firms became a customer in 2008. Min Xiao recalls a day trip by the
founders of this trading firm to our office in Billerica, Massachusetts, one Thursday
afternoon.

Their CTO was a big fan of Mike. After several hours of intense discussions with
us, we politely asked if they needed transportation to the airport. (This was before
the days of Uber.) Their CEO casually brushed aside our request. Only later we
found out that they had no real schedule constraints because they had flown in
their own corporate jet. Not only that, but once he found out that Mike played
the banjo, the next day he brought his bass guitar to the Vertica office. Mike, Stan
Zdonik (a professor in Brown University), and John “JR” Robinson (a founding
engineer of Vertica) played bluegrass together for several hours. This wasn’t
an isolated “Mike fan”: customers loved and respected Mike for his technical
knowledge and straight talk. We often joked that he was our best salesperson
ever. :-)

Over time, this customer became a very close development partner to Vertica.
They voluntarily helped us build Time-series Window functions, a feature-set
that was originally on the “OMDB” list. Due to Vertica’s compressed and sorted
columnar data storage, many of the windowing functions, which often take a
long time to execute in other databases, could run blazingly fast in Vertica.

I recall the thrill that engineers felt to see the fruits of their work in practice.
It was a day of great celebration for the engineering team when this customer
reached a milestone running sub-second queries on 10 trillion rows of historical



340 Chapter27 The Vertica Codeline

trading data! These time-series functions later become one of the major perfor-
mance differentiators for Vertica, and enabled very sophisticated log analytics to
be expressed using rather simple SQL commands.

Abigtechnical inflection point for Vertica came around 2009, when we started to
land customers in the Web and social gaming areas. These companies really pushed
Vertica’s scale to being able to handle petabytes of data in production. It took many
iterations to really get “trickle loads” to work, but in the end this customer had an
architecture where every click from all their games went into the database, and yet
they were able to update analytical models in “near real-time.”

Another inflection point came when a very high profile social media customer
decided torun Vertica on 300 nodes of very cheap and unreliable hardware. Imagine
our shock when we got the first support case on a cluster of this size! This customer
forced the team to really think about high availability and the idea that nodes could
be down any time. As result, the entire system—from the catalog to recovery to
cluster expansion—had to be reviewed for this use case. By this time, more and
more customers wanted to run on the cloud, and all this work proved invaluable to
support that use case.

Lesson. Keep engineers close to customers. Maybe make some music together.
Listen carefully to their problems. Collaborate with them on solutions. Don’t be
afraid to iterate. There is no greater motivator for an engineer than to find out his
or her code didn’t work in the real world, nor greater reward than seeing their code
make a difference to a customer’s business!

Conclusion

Vertica’s storyis one of alot of bold bets, some of which worked right from academic
concept, and others that took a lot of hard engineering to get right. It is also a story
of fruitful collaboration between professors and engineers. Most of all, it is a story of
how a small startup, by working closely with customers, can change the prevailing
standard of an industry, as Vertica did to the practices of data warehousing and big
data analytics.

Acknowledgments
Thank you to Chuck Bear, Dmitry Bochkov, Omer Trajman, and Min Xiao of the
early Vertica Engineering team for sharing their stories for this chapter.








